metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Poly[[[bis(isonicotinamide)copper(II)]-µbenzene-1,2-dicarboxylato] monohydrate]

Xiao-Guang Zhou

College of Environmental Engineering, Jilin Normal University, Siping 136000, People's Republic of China Correspondence e-mail: 03170924@sina.com

Received 29 October 2007; accepted 17 November 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; *R* factor = 0.037; *wR* factor = 0.088; data-to-parameter ratio = 14.1.

In the title compound, $\{[Cu(C_6H_6N_2O)_2(C_8H_4O_4)]\cdot H_2O\}_n$, the Cu^{II} center exhibits a *trans*-CuN₂O₂ square-planar geometry arising from two O atoms of two benzene-1,2-dicarboxylate (bdc) dianions and two N atoms of two isonicotinamide molecules. The bdc dianions link the Cu centres into a zigzag chain. O-H···O and N-H···O hydrogen bonds generate a three-dimensional network.

Related literature

For related literature, see: Aakeroy *et al.* (2002); Abourahma *et al.* (2002); Bhogala *et al.* (2004); Eddaoudi *et al.* (2002); Lehn (1995).

Experimental

b = 22.903 (6) Å

c = 11.473 (3) Å

 $\beta = 97.128 \ (3)^{\circ}$

Crystal data $[Cu(C_6H_6N_2O)_2(C_8H_4O_4)] \cdot H_2O$ $M_r = 489.92$ Monoclinic, P_{2_1}/n a = 8.023 (2) Å

 $V = 2091.7 (9) Å^{3}$ Z = 4Mo K\alpha radiation $\mu = 1.10 \text{ mm}^{-1}$ T = 293 (2) K $0.38 \times 0.16 \times 0.09 \text{ mm}$

Data collection

Bruker APEX CCD diffractometer17837 measured reflectionsAbsorption correction: multi-scan4106 independent reflections(SADABS; Bruker, 2002)3171 reflections with $I > 2\sigma(I)$ $T_{min} = 0.813, T_{max} = 0.903$ $R_{int} = 0.047$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.037$	291 parameters
$wR(F^2) = 0.088$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.30 \ {\rm e} \ {\rm \AA}^{-3}$
4106 reflections	$\Delta \rho_{\rm min} = -0.34 \text{ e } \text{\AA}^{-3}$

Table 1

Cu

Cu

Selected bond lengths (Å).

$1-O6^{i}$	1.9409 (18)	Cu1-N1	2.006 (2)
1-O3	1.9610 (17)	Cu1-N3	2.008 (2)

Symmetry code: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$.

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
OW1−HW1A···O5 ⁱ	0.89	1.87	2.735 (3)	163
$OW1 - HW1B \cdots O4^{ii}$	0.92	2.12	3.042 (3)	176
$N4-H4A\cdotsO1^{iii}$	0.86	2.18	3.015 (3)	165
$N4 - H4B \cdot \cdot \cdot O3^{iv}$	0.86	2.31	3.112 (3)	155
$N2-H2A\cdots O2^{v}$	0.86	2.13	2.946 (3)	159
$N2 - H2B \cdots OW1^{vi}$	0.86	2.46	3.175 (3)	141
Symmetry codes: $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{3}{2};$ $x + \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}.$	(i) $x - \frac{1}{2}, -y$ (iv) $x - 1$	$+\frac{1}{2}, z + \frac{1}{2};$ (v)	ii) $x + \frac{1}{2}, -y + \frac{1}{2}, -y + \frac{3}{2}, y + \frac{1}{2}, -x + \frac{3}{2}, y + \frac{1}{2}, -x + \frac{3}{2}, y + \frac{1}{2}, -x + \frac{3}{2}, $	$\frac{1}{2}, z + \frac{1}{2};$ (iii) $-z + \frac{3}{2};$ (vi)

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *SHELXL97*.

This work was supported by Jilin Normal University Innovative Foundation (research grant No. 20060051056).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2621).

References

- Aakeroy, C. B., Beatty, A. M. & Helfrich, B. A. (2002). J. Am. Chem. Soc. 124, 14425–14432.
- Abourahma, H., Moulton, B., Kravtsov, V. & Zaworotko, M. J. (2002). J. Am. Chem. Soc. 124, 9990–9991.
- Bhogala, B. R., Thallapally, P. K. & Nangia, A. (2004). Cryst. Growth Des. 4, 215–218.
- Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2002). SMART (Version 5.611), SAINT (Version 6.0) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.
- Eddaoudi, M., Kim, J., Rosi, N., Vodak, D., Wachter, J., O'Keeffe, M. & Yaghi, O. M. (2002). Science, 295, 469–472.
- Lehn, J. M. (1995). Supramolecular Chemistry: Concepts and Perspectives. Weinheim: VCH.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Acta Cryst. (2007). E63, m3166 [doi:10.1107/S1600536807060217]

Poly[[[bis(isonicotinamide)copper(II)]-#-benzene-1,2-dicarboxylato] monohydrate]

X.-G. Zhou

Comment

Organic amides have proved to be useful in self-assembling coordination compounds through hydrogen bonding (*e.g.* Bhogala *et al.*, 2004). To augment this family, we obtained the title compound, (I), (Fig. 1), by choosing benzene-1,2-dicarboxylate, isonicotinamide and Cu^{II} as the staring materials.

Compound (I) is constructed from the basic unit $[Cu(C_6H_6N_2O)_2(C_8H_4O_4)]$ [·]H₂O. The Cu^{II} center shows a square planar coordination geometry, being coordinated by two N atoms of two isonicotinamide molecules and two O atoms from two benzene-1,2-dicarboxylate dianions (Table 1). Each benzene-1,2-dicarboxylate ligand bridges two Cu^{II} centers to form an infinite zigzag chain.

Hydrogen-bonding interactions generate a three-dimensional network in the crystal strcture of (I) (Table 2, Fig. 2). Thus, compound (I) can be considered as a three-dimensional supramolecular array stabilized by hydrogen-bonding interactions.

Experimental

A mixture of CuSO₄ (0.5 mmol), benzene-1,2-dicarboxylic acid (0.5 mmol), NaOH (1.0 mmol) and isonicotinamide (1.0 mmol) was heated in water/ethanol (20 ml, 1:1 v/v) mixture and continually stirred about 30 min at 333 K. The mixture was filtered and the filtrate was allowed to stand. One week later, blue blocks of (I) were obtained.

Refinement

The water H atoms were located in a difference map and refined as riding in their as-found relative positions. The U_{iso} values were freely refined.

The C- and N-bound H atoms were positioned geometrically (C—H = 0.93 Å, N—H = 0.86 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(carrier)$.

Figures

Fig. 1. View of (I) showing the local coordination environment of Cu(II) with 30% probability displacement ellipsoids (arbitrary spheres for the H atoms). Symmetry code: (i) x- 1/2, 1/2 -y, 1/2 + z.

Fig. 2. The packing for (I). H atoms have been omitted for clarity.

Poly[[[bis(isonicotinamide)copper(II)]-µ-benzene-1,2-dicarboxylato] monohydrate]

Crystal data	
$[Cu(C_6H_6N_2O)_2(C_8H_4O_4)]\cdot H_2O$	$F_{000} = 1004$
$M_r = 489.92$	$D_{\rm x} = 1.556 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/n$	Mo <i>K</i> α radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 3211 reflections
a = 8.023 (2) Å	$\theta = 2.5 - 23.0^{\circ}$
b = 22.903 (6) Å	$\mu = 1.10 \text{ mm}^{-1}$
c = 11.473 (3) Å	T = 293 (2) K
$\beta = 97.128 \ (3)^{\circ}$	Block, blue
$V = 2091.7 (9) \text{ Å}^3$	$0.38\times0.16\times0.09~mm$
Z = 4	

Data collection

Bruker APEX I CCD diffractometer	4106 independent reflections
Radiation source: fine-focus sealed tube	3171 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.047$
T = 293(2) K	$\theta_{\text{max}} = 26.0^{\circ}$
ω scans	$\theta_{\min} = 2.5^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2002)	$h = -9 \rightarrow 9$
$T_{\min} = 0.813, \ T_{\max} = 0.903$	$k = -28 \rightarrow 28$
17837 measured reflections	$l = -14 \rightarrow 14$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.037$	H-atom parameters constrained
$wR(F^2) = 0.088$	$w = 1/[\sigma^2(F_0^2) + (0.0349P)^2 + 0.975P]$ where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.04	$(\Delta/\sigma)_{\rm max} = 0.001$
4106 reflections	$\Delta \rho_{max} = 0.30 \text{ e} \text{ Å}^{-3}$
291 parameters	$\Delta \rho_{min} = -0.34 \text{ e} \text{ Å}^{-3}$

Primary atom site location: structure-invariant direct Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cu1	0.54119 (4)	0.233735 (13)	0.83422 (3)	0.03007 (11)
03	0.6678 (2)	0.17280 (7)	0.76335 (15)	0.0312 (4)
02	0.0383 (2)	-0.01116 (8)	0.8689 (2)	0.0481 (5)
05	0.9281 (3)	0.22272 (9)	0.57311 (18)	0.0487 (5)
O6	0.8999 (2)	0.20366 (8)	0.38014 (16)	0.0364 (4)
OW1	0.7108 (3)	0.21483 (9)	1.0445 (2)	0.0541 (6)
HW1A	0.6272	0.2354	1.0693	0.068 (11)*
HW1B	0.8019	0.2389	1.0644	0.109 (17)*
O4	0.5213 (3)	0.20936 (9)	0.60265 (17)	0.0460 (5)
01	0.9730 (2)	0.47765 (8)	0.6720 (2)	0.0511 (6)
N4	-0.1684 (3)	0.05588 (10)	0.8562 (2)	0.0434 (6)
H4A	-0.2454	0.0300	0.8588	0.052*
H4B	-0.1948	0.0923	0.8505	0.052*
N1	0.7024 (3)	0.29483 (9)	0.79177 (19)	0.0314 (5)
N2	1.1750 (3)	0.41113 (10)	0.6543 (2)	0.0438 (6)
H2A	1.2418	0.4367	0.6309	0.053*
H2B	1.2055	0.3752	0.6612	0.053*
N3	0.3642 (3)	0.17358 (9)	0.85260 (19)	0.0298 (5)
C13	0.6209 (3)	0.17375 (11)	0.6516 (2)	0.0315 (6)
C16	0.6908 (4)	0.02106 (13)	0.5449 (3)	0.0529 (8)
H16A	0.6550	-0.0165	0.5604	0.063*
C5	0.7409 (3)	0.38399 (12)	0.6910 (3)	0.0391 (7)
H5A	0.6936	0.4158	0.6487	0.047*
C4	1.0243 (3)	0.42715 (12)	0.6799 (2)	0.0357 (6)
C1	0.8677 (3)	0.29098 (11)	0.8185 (2)	0.0342 (6)
H1A	0.9113	0.2594	0.8634	0.041*
C3	0.9141 (3)	0.37930 (11)	0.7179 (2)	0.0311 (6)
C8	0.0795 (4)	0.14272 (12)	0.8104 (3)	0.0423 (7)
H8A	-0.0303	0.1516	0.7796	0.051*
C14	0.6898 (3)	0.12431 (11)	0.5849 (2)	0.0309 (6)
C18	0.8577 (4)	0.08515 (12)	0.4431 (3)	0.0429 (7)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H18A	0.9314	0.0908	0.3876	0.051*
C9	0.1188 (3)	0.08828 (11)	0.8575 (2)	0.0301 (6)
C15	0.6331 (4)	0.06837 (12)	0.6035 (3)	0.0430 (7)
H15A	0.5552	0.0625	0.6560	0.052*
C10	-0.0085 (3)	0.03971 (12)	0.8608 (2)	0.0348 (6)
C19	0.8055 (3)	0.13276 (11)	0.5048 (2)	0.0312 (6)
C2	0.9782 (3)	0.33170 (11)	0.7827 (2)	0.0344 (6)
H2C	1.0935	0.3271	0.8019	0.041*
C11	0.2846 (3)	0.07746 (11)	0.9010 (2)	0.0346 (6)
H11A	0.3159	0.0412	0.9328	0.042*
C12	0.4028 (3)	0.12067 (11)	0.8968 (2)	0.0338 (6)
H12A	0.5139	0.1127	0.9259	0.041*
C20	0.8826 (3)	0.19152 (11)	0.4871 (3)	0.0316 (6)
C7	0.2050 (3)	0.18376 (12)	0.8097 (3)	0.0424 (7)
H7A	0.1772	0.2203	0.7778	0.051*
C6	0.6409 (3)	0.34095 (12)	0.7279 (3)	0.0393 (7)
H6A	0.5253	0.3438	0.7079	0.047*
C17	0.8012 (4)	0.02959 (13)	0.4637 (3)	0.0518 (8)
H17A	0.8376	-0.0020	0.4228	0.062*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.02659 (18)	0.02751 (18)	0.0382 (2)	-0.00159 (14)	0.01255 (14)	0.00079 (14)
O3	0.0280 (10)	0.0329 (10)	0.0340 (11)	0.0018 (8)	0.0089 (8)	0.0003 (8)
O2	0.0328 (12)	0.0275 (11)	0.0845 (16)	0.0015 (9)	0.0098 (11)	0.0008 (10)
O5	0.0579 (14)	0.0435 (12)	0.0451 (13)	-0.0152 (10)	0.0078 (10)	-0.0065 (10)
O6	0.0382 (11)	0.0318 (10)	0.0425 (11)	-0.0025 (8)	0.0184 (9)	0.0016 (9)
OW1	0.0533 (14)	0.0437 (12)	0.0687 (16)	-0.0015 (12)	0.0218 (12)	-0.0039 (11)
O4	0.0449 (13)	0.0430 (12)	0.0478 (13)	0.0133 (10)	-0.0033 (10)	0.0019 (10)
01	0.0408 (13)	0.0271 (11)	0.0886 (17)	0.0001 (9)	0.0202 (11)	0.0062 (11)
N4	0.0260 (13)	0.0307 (13)	0.0737 (18)	-0.0010 (10)	0.0072 (12)	0.0092 (12)
N1	0.0271 (12)	0.0293 (12)	0.0393 (13)	-0.0007 (10)	0.0100 (10)	0.0025 (10)
N2	0.0298 (13)	0.0299 (12)	0.0738 (18)	-0.0033 (10)	0.0151 (12)	0.0074 (12)
N3	0.0230 (11)	0.0278 (11)	0.0399 (13)	0.0002 (9)	0.0090 (9)	0.0010 (10)
C13	0.0240 (14)	0.0312 (14)	0.0401 (16)	-0.0065 (11)	0.0070 (12)	-0.0002 (12)
C16	0.064 (2)	0.0283 (16)	0.065 (2)	-0.0086 (15)	0.0030 (18)	0.0004 (15)
C5	0.0317 (16)	0.0346 (15)	0.0520 (18)	0.0057 (12)	0.0092 (13)	0.0137 (13)
C4	0.0297 (15)	0.0312 (15)	0.0465 (17)	-0.0051 (12)	0.0054 (12)	-0.0009 (13)
C1	0.0318 (15)	0.0286 (14)	0.0418 (16)	0.0027 (12)	0.0032 (12)	0.0055 (12)
C3	0.0295 (15)	0.0263 (13)	0.0383 (15)	-0.0021 (11)	0.0072 (12)	-0.0015 (11)
C8	0.0250 (15)	0.0365 (16)	0.064 (2)	-0.0017 (12)	-0.0021 (13)	0.0107 (14)
C14	0.0294 (14)	0.0298 (14)	0.0331 (15)	-0.0022 (11)	0.0018 (11)	0.0012 (11)
C18	0.0459 (18)	0.0385 (17)	0.0461 (18)	0.0050 (14)	0.0131 (14)	-0.0026 (14)
C9	0.0266 (14)	0.0265 (13)	0.0381 (15)	-0.0005 (11)	0.0078 (11)	0.0004 (11)
C15	0.0460 (18)	0.0387 (17)	0.0457 (18)	-0.0117 (14)	0.0114 (14)	0.0018 (14)
C10	0.0304 (15)	0.0303 (15)	0.0444 (17)	-0.0018 (12)	0.0069 (12)	0.0017 (12)
C19	0.0284 (15)	0.0276 (14)	0.0374 (15)	0.0015 (11)	0.0037 (12)	-0.0004 (12)

C2	0.0258 (14)	0.0317 (15)	0.0451 (17)	-0.0001(12)	0.0017 (12)	0.0017 (12)
C11	0.0298 (15)	0.0275 (14)	0.0470 (17)	0.0044 (11)	0.0065 (12)	0.0050 (12)
C12	0.0229 (14)	0.0359 (15)	0.0429 (16)	0.0038 (12)	0.0053 (12)	0.0047 (12)
C20	0.0239 (14)	0.0297 (14)	0.0421 (17)	0.0030 (11)	0.0080 (12)	0.0006 (12)
C7	0.0319 (16)	0.0289 (15)	0.066 (2)	0.0002 (12)	0.0029 (14)	0.0139 (14)
C6	0.0240 (14)	0.0426 (17)	0.0526 (19)	0.0024 (12)	0.0095 (13)	0.0123 (14)
C17	0.061 (2)	0.0308 (16)	0.065 (2)	0.0040 (15)	0.0106 (17)	-0.0119 (15)
Geometric paran	neters (Å, °)					
Cu1—O6 ⁱ		1.9409 (18)	C5—	C6	1.371	(4)
Cu1—O3		1.9610 (17)	C5—	C3	1.390	(4)
Cu1—N1		2.006 (2)	C5—	H5A	0.9300	0
Cu1—N3		2.008 (2)	C4—	C3	1.506	(4)
O3—C13		1.291 (3)	C1—	C2	1.384	(4)
O2—C10		1.224 (3)	C1—	H1A	0.9300)
O5—C20		1.237 (3)	C3—	C2	1.382	(4)
O6—C20		1.282 (3)	C8—	C7	1.379	(4)
O6—Cu1 ⁱⁱ		1.9409 (18)	C8—	С9	1.379	(4)
OW1—HW1A		0.8939	C8—	H8A	0.9300)
OW1—HW1B		0.9207	C14-	C15	1.385	(4)
O4—C13		1.228 (3)	C14-	C19	1.399	(4)
O1—C4		1.227 (3)	C18–	C17	1.381	(4)
N4—C10		1.330 (3)	C18–	C19	1.392	(4)
N4—H4A		0.8600	C18–	-H18A	0.9300	0
N4—H4B		0.8600	С9—	C11	1.384	(4)
N1-C1		1.326 (3)	С9—	C10	1.514	(4)
N1—C6		1.344 (3)	C15–	-H15A	0.9300	0
N2—C4		1.331 (3)	C19–	-C20	1.505	(4)
N2—H2A		0.8600	C2—	H2C	0.9300)
N2—H2B		0.8600	C11–	-C12	1.375	(4)
N3—C7		1.331 (3)	C11–	-H11A	0.9300)
N3—C12		1.335 (3)	C12-	-H12A	0.9300)
C13—C14		1.509 (4)	C7—	H7A	0.9300)
C16—C17		1.377 (4)	C6—	H6A	0.9300	0
C16—C15		1.385 (4)	C17–	-H17A	0.9300)
C16—H16A		0.9300				
O6 ⁱ —Cu1—O3		171.25 (8)	С9—	С8—Н8А	120.4	
O6 ¹ —Cu1—N1		88.08 (8)	C15–	-C14C19	119.1	(2)
O3—Cu1—N1		90.75 (8)	C15–	C14C13	117.9	(2)
O6 ⁱ —Cu1—N3		91.93 (8)	C19–	-C14C13	123.0	(2)
O3—Cu1—N3		87.98 (8)	C17–	-C18-C19	120.6	(3)
N1—Cu1—N3		171.72 (9)	C17–	-C18-H18A	119.7	
C13—O3—Cu1		107.33 (16)	C19–	-C18-H18A	119.7	
C20—O6—Cu1 ⁱⁱ		123.79 (18)	C8—	C9—C11	117.8	(2)
HW1A—OW1—I	HW1B	102.2	C8—	C9—C10	123.5	(2)
C10—N4—H4A		120.0	C11–	-C9-C10	118.7	(2)
C10—N4—H4B		120.0	C16–	C15C14	120.9	(3)

H4A—N4—H4B	120.0	C16—C15—H15A	119.6
C1—N1—C6	117.8 (2)	C14—C15—H15A	119.6
C1—N1—Cu1	123.62 (18)	O2—C10—N4	123.6 (3)
C6—N1—Cu1	118.47 (18)	O2—C10—C9	120.0 (2)
C4—N2—H2A	120.0	N4—C10—C9	116.4 (2)
C4—N2—H2B	120.0	C18—C19—C14	119.4 (2)
H2A—N2—H2B	120.0	C18—C19—C20	118.5 (2)
C7—N3—C12	117.8 (2)	C14—C19—C20	122.0 (2)
C7—N3—Cu1	119.97 (18)	C3—C2—C1	118.8 (2)
C12—N3—Cu1	121.91 (17)	C3—C2—H2C	120.6
O4—C13—O3	123.9 (2)	C1—C2—H2C	120.6
O4—C13—C14	121.7 (2)	C12—C11—C9	119.7 (2)
O3—C13—C14	114.3 (2)	С12—С11—Н11А	120.2
C17—C16—C15	120.0 (3)	C9—C11—H11A	120.2
C17—C16—H16A	120.0	N3—C12—C11	122.5 (2)
C15—C16—H16A	120.0	N3—C12—H12A	118.7
C6—C5—C3	118.9 (3)	C11—C12—H12A	118.7
С6—С5—Н5А	120.6	O5—C20—O6	125.6 (3)
С3—С5—Н5А	120.6	O5—C20—C19	119.7 (2)
O1—C4—N2	123.3 (3)	O6—C20—C19	114.7 (2)
O1—C4—C3	120.2 (2)	N3—C7—C8	123.1 (3)
N2—C4—C3	116.4 (2)	N3—C7—H7A	118.4
N1—C1—C2	123.1 (2)	С8—С7—Н7А	118.4
N1—C1—H1A	118.5	N1—C6—C5	123.0 (3)
C2—C1—H1A	118.5	N1—C6—H6A	118.5
C2—C3—C5	118.4 (2)	С5—С6—Н6А	118.5
C2—C3—C4	122.5 (2)	C16—C17—C18	119.9 (3)
C5—C3—C4	119.1 (2)	С16—С17—Н17А	120.0
С7—С8—С9	119.1 (3)	С18—С17—Н17А	120.0
С7—С8—Н8А	120.4		
N1—Cu1—O3—C13	-81.57 (16)	C8—C9—C10—N4	-23.4(4)
N3—Cu1—O3—C13	90.24 (16)	C11—C9—C10—N4	158.3 (3)
$O6^{i}$ —Cu1—N1—C1	136.7 (2)	C17—C18—C19—C14	-2.4(4)
$O_3 - C_{11} - N_1 - C_1$	-520(2)	C17 - C18 - C19 - C20	174.6(3)
Of ⁱ Cul NI Cf	-46.6(2)	$C_{15} - C_{14} - C_{19} - C_{18}$	17(4)
00 - Cu1 - N1 - C0	40.0(2)	$C_{13} = C_{14} = C_{19} = C_{18}$	(+)
	124.8 (2)		-177.5(3)
06	45.0 (2)	C13 - C14 - C19 - C20	-1/5.2 (3)
03—Cu1—N3—C7	-126.2 (2)	C13—C14—C19—C20	5.8 (4)
$O6^{1}$ —Cu1—N3—C12	-141.7 (2)	C5—C3—C2—C1	-0.3 (4)
O3—Cu1—N3—C12	47.1 (2)	C4—C3—C2—C1	177.2 (2)
Cu1—O3—C13—O4	3.4 (3)	N1—C1—C2—C3	1.2 (4)
Cu1—O3—C13—C14	-172.49 (16)	C8—C9—C11—C12	0.5 (4)
C6—N1—C1—C2	-0.7 (4)	C10-C9-C11-C12	178.8 (2)
Cu1—N1—C1—C2	176.0 (2)	C7—N3—C12—C11	-1.0 (4)
C6—C5—C3—C2	-1.1 (4)	Cu1—N3—C12—C11	-174.5 (2)
C6—C5—C3—C4	-178.6 (3)	C9—C11—C12—N3	0.4 (4)
O1—C4—C3—C2	-147.1 (3)	Cu1 ⁱⁱ —O6—C20—O5	12.9 (4)

N2-C4-C3-C2	34.1 (4)	Cu1 ⁱⁱ —O6—C20—C19	-164.68 (16)
O1—C4—C3—C5	30.4 (4)	C18—C19—C20—O5	-135.5 (3)
N2—C4—C3—C5	-148.4 (3)	C14—C19—C20—O5	41.5 (4)
O4—C13—C14—C15	-107.9 (3)	C18—C19—C20—O6	42.3 (3)
O3—C13—C14—C15	68.1 (3)	C14—C19—C20—O6	-140.8 (3)
O4—C13—C14—C19	71.2 (4)	C12—N3—C7—C8	0.9 (4)
O3—C13—C14—C19	-112.8 (3)	Cu1—N3—C7—C8	174.5 (2)
C7—C8—C9—C11	-0.6 (4)	C9—C8—C7—N3	-0.1 (5)
C7—C8—C9—C10	-178.9 (3)	C1—N1—C6—C5	-0.8 (4)
C17-C16-C15-C14	-2.5 (5)	Cu1—N1—C6—C5	-177.7 (2)
C19—C14—C15—C16	0.7 (4)	C3—C5—C6—N1	1.7 (4)
C13-C14-C15-C16	179.8 (3)	C15-C16-C17-C18	1.8 (5)
C8—C9—C10—O2	157.5 (3)	C19—C18—C17—C16	0.7 (5)
C11—C9—C10—O2	-20.8 (4)		
~		· · · ·	

Symmetry codes: (i) *x*-1/2, -*y*+1/2, *z*+1/2; (ii) *x*+1/2, -*y*+1/2, *z*-1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
OW1—HW1A···O5 ⁱ	0.89	1.87	2.735 (3)	163
OW1—HW1B····O4 ⁱⁱⁱ	0.92	2.12	3.042 (3)	176
N4—H4A····O1 ^{iv}	0.86	2.18	3.015 (3)	165
N4—H4B···O3 ^v	0.86	2.31	3.112 (3)	155
N2—H2A····O2 ^{vi}	0.86	2.13	2.946 (3)	159
N2—H2B····OW1 ⁱⁱ	0.86	2.46	3.175 (3)	141

Symmetry codes: (i) *x*-1/2, -*y*+1/2, *z*+1/2; (iii) *x*+1/2, -*y*+1/2, *z*+1/2; (iv) -*x*+1/2, *y*-1/2, -*z*+3/2; (v) *x*-1, *y*, *z*; (vi) -*x*+3/2, *y*+1/2, -*z*+3/2; (ii) *x*+1/2, -*y*+1/2, *z*+1/2; (iii) *x*+1/2, -*y*+1/2, *z*+1/2; (iv) -*x*+1/2, *y*-1/2, -*z*+3/2; (v) *x*-1, *y*, *z*; (vi) -*x*+3/2, *y*+1/2, -*z*+3/2; (ii) *x*+1/2, -*y*+1/2, *z*+1/2; (iv) -*x*+1/2, *y*-1/2, -*z*+3/2; (v) *x*-1, *y*, *z*; (vi) -*x*+3/2, *y*+1/2, -*z*+3/2; (ii) *x*+1/2, -*y*+1/2, *z*+1/2; (iv) -*x*+1/2, *y*-1/2, -*z*+3/2; (v) *x*-1, *y*, *z*; (vi) -*x*+3/2, *y*+1/2, -*z*+3/2; (v) *x*-1, *y*, *z*; (vi) -*x*+3/2, *y*+1/2, -*z*+3/2; (v) *x*-1, *y*, *z*; (vi) -*x*+3/2, *y*+1/2, -*z*+3/2; (vi) -*x*+3/2, *y*+1/2, -*z*+3/2; (vi) -*x*+3/2, -*y*+1/2, -*z*+3/2; (vi) -*x*+3/2; (

Fig. 1

